FREE shipping to on qualifying orders when you spend or more.


Product Code M2216A1

4CzTPN-Ph, a well-known orange emitting material that is widely used in highly efficient TDAF-OLED devices.

Comapring to 4CzTPN, the eight phenyl groups at 3,6-positions of carbazole moieties can further increase the electron-donating ability for 4CzTPN-Ph while at the same time greater steric hindrance is introduced. The increased steric hindrance can effectively prevent molecular interactions, i.e. the formation of the excimer.

With the donor-acceptor structure enabling the molecule with good two emission characteristics, 4CzTPN-Ph can also be used for both one- and two-photon cellular fluorescence imaging as nanoparticles dispersed in water with good dispersibility, superior resistance against photodegradation and photobleaching and low cytotoxicity.

General Information

CAS number 1416881-55-4
Full name 2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)-1,4-dicyanobenzene
Synonyms 2,3,5,6-tetrakis(3,6-diphenyl-9H-carbazol-9-yl)terephthalonitrile
Chemical formula C104H64N6
Molecular weight 1397.66 g/mol
Absorption λmax 377 nm, 547 nm in toluene
Fluorescene λem 577 nm in toluene
HOMO/LUMO HOMO = 5.90 eV, LUMO = 4.0 eV, T1 = 2.21 eV [1]
Classification / Family Carbazole, TADF materials, Orange dopant materials, Sublimed materials

Product Details

Purity Sublimed >99.0% (1H NMR)
Melting point n.a.
Appearance Orange powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

Chemical Structure of 2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)-1,4-dicyanobenzene (4CzTPN-Ph).

Device Structure(s)

Device structure ITO/MoO3 (3 nm)/mCP (20 nm)/mCBP:PO-T2T* (20 nm)/PO-T2T:5.0 wt.% 4CzTPN-Ph (10 nm)/ PO-T2T (40 nm)/LiF (0.8 nm)/Al [2]
Colour White white
Max. Current Efficiency 11.88 cd/A
Max. EQE 5.75%
Max. Power Efficiency 9.33 Im/W


Device structure ITO/MoO3 (5 nm)/mCP (40 nm)/DMAC-DPS: 0.4 wt.% 4CzTPN-Ph (30 nm)/SPPO13* (50 nm)/CsF (1 nm)/Al (150 nm) [3]
Colour White white
Max. EQE 14.7%
Max. Power Efficiency 35.6 Im/W


Device structure ITO/MoO3 (5 nm)/mCP (40 nm)/DMAC-DPS: 9 wt.% 4CzTPN-Ph (30 nm)/SPPO13 (50 nm)/CsF (1 nm)/Al (150 nm) [3]
Colour Orange orange
Max. EQE 11.0%
Max. Power Efficiency 36.6 Im/W

Device structure ITO/HATCN (10 nm)/Tris-PCz (35 nm)/10 wt.% 4CzPN:mCBP (G-EML) (5 nm)/6 wt.% 4CzPN:2 wt.% 4CzTPN-Ph:mCBP (R-EML) (4 nm)/10 wt.% 3CzTRZ:PPT (B-EML) (6 nm)/PPT (50 nm)/LiF (0.8 nm)/Al (100 nm) [4]
Colour White  white
Max. Power Efficiency 34.1 lm W1
Max. Current Efficiency 45.6 cd/A
Max. EQE 17.0%


Device structure ITO/HATCN (10 nm)/Tris-PCz (35 nm)/10 wt. % 4CzPN:mCBP (G-EML) (5 nm)/6 wt. % 4CzPN:2 wt. % 4CzTPN-Ph:mCBP (R-EML) (4 nm)/10 wt. % 3CzTRZ:PPT (B-EML) (6 nm)/PPT (50 nm)/LiF (0.8 nm)/Al (100 nm) [4]
Colour White white
Max. Current Efficiency 13.13 cd/A 
Max. EQE 6.8%
Max. Power Efficiency 4.75 lm W-1

*For chemical structure information, please refer to the cited references.

MSDS Documentation



Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2104A1 250 mg £313.00
Sublimed (>99.0% purity) M2104A1 500 mg £533.00
Sublimed (>99.0% purity) M2104A1 1 g £852.00

Literature and Reviews

  1. Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices, J. Deng et al., Sci. Rep., 7:44396 (2017); DOI: 10.1038/srep44396.
  2. Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant, T. Zhang et al., Sci. Rep., 5:10234 (2015); DOI: 10.1038/srep10234.
  3. Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials, Z. Liu et al., Org. Electron., 41, 237-244 (2017); doi: 0.1016/j.orgel.2016.11.010.
  4. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence, J. Nishide et al., Appl. Phys. Lett. 104, 233304 (2014); doi: 10.1063/1.4882456.
  5. Self-Assembly of Electron Donor−Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both Oneand Two-Photon Cellular Imaging, J. Zhang et al., ACS Appl. Mater. Interfaces, 8, 18, 11355-11365 (2016); DOI: 10.1021/acsami.6b03259.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.