FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.

B3PyPB


Product Code M2127A1
Price $197.00 ex. VAT

B3PyPB, ETL and HBL material in OLED devices

Used to improve the performance of PhOLEDs


Bearing four pyridyl groups, B3PyPB is electron deficient and has high electron mobility. It is widely used as an electron-transport material (ETL) in OLED devices. With a deep HOMO energy level (6.60 eV), B3PyPB is also used as a hole-blocking layer material (EBL). 

Having a high triplet energy (ET = 2.77 eV), B3PyPB is used in phosphorescent OLEDs to suppress triplet quenching of the light-emitting molecules, leading to higher external quantum efficiency - hence improving the device performance.

General Information

CAS number 1030380-38-1
Full name 1,3-Bis(3,5-dipyrid-3-ylphenyl)benzene
Chemical formula C38H26N4
Molecular weight 538.64 g/mol
Absorption λmax 259 nm in film
Fluorescence λem 359 nm in film
HOMO/LUMO HOMO 6.60 eV, LUMO 2.60 eV [1]
Synonyms 1,3-Bis[3,5-di(pyridin-3-yl)phenyl]benzene, BmPyPB, BmPyPhB
Classification / Family Organic electronics, Hole blocking layer materials (HBL), Electron transporting layer materials (ETL), TADF-OLEDs, Sublimed materials.

Product Details

Purity Sublimed: >99.0% (HPLC)
Melting point  TGA: >350 °C (0.5% weight loss)
Colour White powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

b3pypb chemical structure
Chemical structure of B3PyPB

Device Structure(s)

Device structure ITO (130 nm)/TAPC (60 nm)/TCTA:7 wt% FIrpic (5 nm)/TCTA:FIrpic 20 wt% (5 nm)/B3PyPB (20 nm)/ B3PyPB:25 wt% Liq (35 nm)/Liq (1 nm)/Al (100 nm) [2]
Colour Blue  blue
Current Efficiency@100 cd/m2 51.6 cd/A 
EQE@100 cd/m2 21.8%
Power Efficiency@100 cd/m2 56.5 lm W-1
Device structure ITO (130 nm)/TAPC (60 nm)/TCTA:7 wt% FIrpic (5 nm)/TCTA:FIrpic 20 wt% (5 nm)/B3PyPB (20 nm)/B3PyPB:25wt% Liq (35 nm)/Liq (1 nm)/Al (1 nm)/MoO3 (5 nm)/TAPC (60 nm)/TCTA:7 wt% FIrpic (5 nm)/TCTA: FIrpic 20 wt% (10 nm)/B3PyPB (20 nm)/B3PyPB: 25wt% Liq (35 nm /Liq (1 nm) [2]
Colour Blue  blue
Current Efficiency@100 cd/m2 90.0 cd/A 
EQE@100 cd/m2 41.1% 
Power Efficiency@100 cd/m2 40.8 lm W-1
Device structure ITO/triphenylamine-containing polymer: PPBI (20 nm)/TAPC (20 nm)/ 10 wt% CzAc-26DPPM:mCP (10 nm)/10 wt% CzAc-26DPPM:DPEPO (10 nm)/B3PyPB (50 nm)/LiF (0.5 nm)/Al (100 nm) [3]
Colour Blue  blue
Current Efficiency@100 cd/m2 53.9 cd/A 
EQE@100 cd/m2 22.8%
Power Efficiency@100 cd/m2 59.2 lm W-1
Device structure ITO/triphenylamine-containing polymer: PPBI* (20 nm)/TAPC (20 nm)/ 10 wt% CzAc-26DPPM:mCP (10 nm)/10 wt% CzAc-26DPPM:DPEPO (10 nm)/B3PyPB (50 nm)/LiF (0.5 nm)/Al (100 nm) [4]
Colour Blue  blue
Max. Current Efficiency 28.6 cd/A 
Max. EQE 18.6%
Max. Power Efficiency 35.9 lm W-1
Device structure ITO (130 nm)/TAPC (40 nm)/TCTA (5 nm)/ PQ2Ir(dpm) 2 wt % doped CBP (1 nm)/Ir(ppy)3 6 wt % doped CBP (1 nm)/Ir(dbfmi)* 10 wt % doped PO9 (10 nm)/B3PyPB (50 nm)/LiF (0.5 nm)/Al (100 nm) [4]
Colour White white
Max. Current Efficiency 53.7 cd/A 
Max. EQE 23.3%
Max. Power Efficiency 55.2 lm W-1
Device structure ITO (130 nm)/TAPC (35 nm)/5 wt% 4CzIPN-doped CBP (15 nm)/B3PyPB (65 nm)/LiF (0.8 nm)/Al (100 nm) [5]
Colour Green  green
Max Current Efficiency 71.2 cd/A 
Max EQE 21.8%
Max. Power Efficiency 60.9 lm W-1
Device structure ITO (90 nm)/HATCN (5 nm)/TAPC (65 nm)/10 wt% fac -Ir(mpim)3 -doped TCTA (5 nm)/10 wt% fac -Ir(mpim)3 -doped 26DCzPPy (5 nm)/B3PyPB (65 nm)/Liq (2 nm)/Al (80 nm) [6]
Colour Blue  blue
Current Efficiency@100 cd/m2 73.2 cd/A 
EQE@100 cd/m2 29.6% 
Power Efficiency@100 cd/m2 76.5 lm W-1

*For chemical structure information, please refer to the cited references.

Pricing

Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2127A1 100 mg £151.00
Sublimed (>99.0% purity) M2127A1 250 mg £302.00
Sublimed (>99.0% purity) M2127A1 500 mg £513.00
Sublimed (>99.0% purity) M2127A1 1 g £872.00

MSDS Documentation

B3PyPB MSDSB3PyPB MSDS sheet

Literature and Reviews

  1. High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter, R. Komatsu et al., Synth. Met., 202, 165–168 (2015); doi: 10.1016/j.synthmet.2015.02.009.
  2. Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%, H. Sasabe et al., Org. Electron., 13, 2615–2619 (2012); doi: 0.1016/j.orgel.2012.07.019.
  3. Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidine-Based Emitter, K. Nakao et al., Adv. Optical Mater., 5, 1600843 (2017); DOI: 10.1002/adom.201600843.
  4. High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex, H. Sasabe et al., Adv. Mater., 22, 5003–5007 (2010); DOI: 10.1002/adma.201002254.
  5. High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm/W, Y. Seino et al., Adv. Mater., 28, 2638–2643 (2016); DOI: 10.1002/adma.201503782.
  6. Low-Driving-Voltage Blue Phosphorescent Organic Light-Emitting Devices with External Quantum Efficiency of 30%, K. Udagawa et al., Adv. Mater., 26, 5062–5066 (2014); DOI: 10.1002/adma.201401621.
  7. Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes, Y. Im et al., Adv. Funct. Mater., 27, 1603007 (2017); DOI: 10.1002/adfm.201603007.


To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top