We ship worldwide. Spend or more for FREE tracked shipping to , normally .
For more information, please see our worldwide shipping page.
We ship worldwide. Tracked large item shipping to from . All other products ship free with the purchase of an Ossila Glove Box.
Make sure your lab is fully equipped and stock up on high-quality materials, accessories, and consumables with our large order discounts. Spend over £10,000 for a 10% discount.
B3PyPB, ETL and HBL material in OLED devices
Used to improve the performance of PhOLEDs
Bearing four pyridyl groups, B3PyPB is electron deficient and has high electron mobility. It is widely used as an electron-transport material (ETL) in OLED devices. With a deep HOMO energy level (6.60 eV), B3PyPB is also used as a hole-blocking layer material (EBL).
Having a high triplet energy (ET = 2.77 eV), B3PyPB is used in phosphorescent OLEDs to suppress triplet quenching of the light-emitting molecules, leading to higher external quantum efficiency - hence improving the device performance.
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter, R. Komatsu et al., Synth. Met., 202, 165–168 (2015); doi: 10.1016/j.synthmet.2015.02.009.
Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%, H. Sasabe et al., Org. Electron., 13, 2615–2619 (2012); doi: 0.1016/j.orgel.2012.07.019.
Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidine-Based Emitter, K. Nakao et al., Adv. Optical Mater., 5, 1600843 (2017); DOI: 10.1002/adom.201600843.
High-Efficiency Blue and White Organic Light-Emitting Devices Incorporating a Blue Iridium Carbene Complex, H. Sasabe et al., Adv. Mater., 22, 5003–5007 (2010); DOI: 10.1002/adma.201002254.
High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm/W, Y. Seino et al., Adv. Mater., 28, 2638–2643 (2016); DOI: 10.1002/adma.201503782.
Low-Driving-Voltage Blue Phosphorescent Organic Light-Emitting Devices with External Quantum Efficiency of 30%, K. Udagawa et al., Adv. Mater., 26, 5062–5066 (2014); DOI: 10.1002/adma.201401621.
Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes, Y. Im et al., Adv. Funct. Mater., 27, 1603007 (2017); DOI: 10.1002/adfm.201603007.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.