PTAA (perovskite applications)

Order Code: M513
MSDS sheet

Price

(excluding Taxes)

£191.60


Note: We also have PTAA family members (PTAA for OFETs) for organic field-effect transistor applications.

Pricing

 Batch Quantity Price
M513 / M514 100 mg £191.60
M513 / M514 250 mg £383.20
M513 / M514 500 mg £633.60
M513 / M514 1 g £986.80

Batch details

Batch Mw Mn PDI Stock info
M512 27,371 13,514 2.02 Out of stock
M513 28,422 17,437 1.63 In stock
M514 14,000 9,150 1.53 In Stock

General Information

CAS number 1333317-99-9
Chemical formula (C21H19N)n
Molecular weight  Please see batch details
HOMO / LUMO HOMO 5.25 eV      LUMO 2.30 eV [6]
Recommended solvents Chlorobenzene, chloroform, dichlorobenzene and toluene
Synonyms

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine
Poly(triarylamine)

    Classification / Family

    Polyamines, Hole-transport layer materials, Electron-blocking layer materials, Organic semiconducting materials, Organic photovoltaics, Polymer solar cells, OLED materials

      

    Chemical Structure

    trimethylphenyl amine ptaa poly(triaryl)amine
    Chemical structure of Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine, PTAA, CAS No. 1333317-99-9.

     

    Applications

    Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), one of the family members of poly(triaryl)amine, is an excellent hole-transporting and electron-blocking semiconducting material due to its electron-rich components. It has been reported that the use of PTAA can substantially improve the open-circuit voltage (VOC) and fill factor (FF) of the cells. Perovskite solar cells based on the use of the hole-transporting materials exhibit a short-circuit current density JSC of 16.5 mA/cm2VOC of 0.997 V and FF of 0.727.[1]

    With PTAA as the hole-transport layer (HTL), best results have shown that the incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3, improving the power conversion efficiency of the solar cell to more than 18% under a standard illumination of 100 milliwatts/cm2 [2]. This makes PTAA the best polymer HTL yet for perovskites. Later on, 20.2% was achieved in 2015 with PTAA as the HTL [3].

     

    Device structure

    FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/PTAA/Au [1]

    FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Au [1]

    JSC (mA cm-2) 16.4 6.8
    VOC (V) 0.9 0.68
    FF (%) 61.4 53.8
    PCE 9.0 2.5
    Device structure

    FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [2]

    JSC (mA cm-2) 22.5
    VOC (V) 1.11
    FF (%) 73.2
    PCE 18.4
    Device structure

    FTO/bl-TiO2/mp-TiO2/FAPbI3 (DMSO)/PTAA/Au [3]

    JSC (mA cm-2) 24.7
    VOC (V) 1.06
    FF (%) 77.5
    PCE 20.2

     

    Literature and Reviews

    1. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, J. Heo et al., Nat. Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80.
    2. Compositional engineering of perovskite materials for high-performance solar cells, N. Jeon et al., Nature 517, 476–480 (2015), doi:10.1038/nature14133.
    3. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, W-S. Yang et al., Science, 348 (6240), 1234-1237 (2015). DOI: 10.1126/science.aaa9272.
    4. High-efficient solid-state perovskite solar cells without lithium salt in the hole transport material, NANO 09, 1440001 (2014). DOI: 10.1142/S1793292014400013.
    5. Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells, J. Noh et al., Nano Lett., 13, 1764−1769 (2013), dx.doi.org/10.1021/nl400349b.
    6. Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays, A. Intaniwet et al., ACS Appl Mater Interfaces. 2(6), 1692-9 (2010). doi: 10.1021/am100220y.
    7. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells, A. Lefrançois et al., Sci Rep. 2015; 5: 7768. doi: 10.1038/srep07768.
    8. Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability, Y. Wang et al., Adv. Funct. Mater., 26, 1375–1381 (2016); DOI: 10.1002/adfm.201504245.

     


    Return to the top