PTAA (perovskite applications)

Order Code: M511
MSDS sheet

Price

(excluding Taxes)

£199.00


Note: We also have PTAA family members (PTAA for OFETs) for the the applications of organic field-effect transistors.

General Information

CAS number 1333317-99-9
Chemical formula (C21H19N)n
Molecular weight  Mw = 7,320, Mn = 4,960
HOMO / LUMO HOMO 5.25 eV      LUMO 2.30 eV [6]
Recommended solvents Chlorobenzene, chloroform, dichlorobenzene and toluene
Synonyms

Poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine
Poly(triarylamine)

    Classification / Family

    Polyamines, Hole transport layer materials, Electron blocking layer materials, Organic semiconducting materials, Organic photovoltaics, Polymer solar cells, OLED materials

     

    Chemical Structure

    ptaa poly(triaryl)amine chemical structure
    Chemical structure of Poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine, PTAA, CAS No. 1333317-99-9.

     

    Applications

    Poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine, PTAA, one of the family members of poly(triaryl)amine, is an excellent hole transporting and electron blocking semiconducting material due to its electron-rich components. It has been reported that the use of a PTAA can substantially improve the open-circuit voltage (VOC) and fill factor (FF) of the cells. Perovskite solar cells based on the use of the hole transporting materials exhibit a short-circuit current density JSC of 16.5 mA cm2VOC of 0.997 V and FF of 0.727.[1]

    Best results show that, with PTAA as the HTL, incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3 and improves the power conversion efficiency of the solar cell to more than 18% under a standard illumination of 100 milliwatts per square centimetre,[2] which makes PTAA the best polymer HTL so far for perovskites. Later on, 20.2% was achieved in 2015 with PTAA as the hole transport layer material.[3]

     

    Device structure

    FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/PTAA/Au [1]

    FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Au [1]

    JSC (mA cm-2) 16.4 6.8
    VOC (V) 0.9 0.68
    FF (%) 61.4 53.8
    PCE 9.0 2.5
    Device structure

    FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [2]

    JSC (mA cm-2) 22.5
    VOC (V) 1.11
    FF (%) 73.2
    PCE 18.4
    Device structure

    FTO/bl-TiO2/mp-TiO2/FAPbI3 (DMSO)/PTAA/Au [3]

    JSC (mA cm-2) 24.7
    VOC (V) 1.06
    FF (%) 77.5
    PCE 20.2

     

    Characterisation

    GPC PTAA

    GPC trace of Poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine (PTAA).

    Literature and Reviews

    1. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, J. Heo et al., Nat. Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80.
    2. Compositional engineering of perovskite materials for high-performance solar cells, N. Jeon et al., Nature 517, 476–480 (2015), doi:10.1038/nature14133.
    3. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, W-S. Yang et al., Science, 348 (6240), 1234-1237 (2015). DOI: 10.1126/science.aaa9272.
    4. High-efficient solid-state perovskite solar cells without lithium salt in the hole transport material, NANO 09, 1440001 (2014). DOI: 10.1142/S1793292014400013.
    5. Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells, J. Noh et al., Nano Lett., 13, 1764−1769 (2013), dx.doi.org/10.1021/nl400349b.
    6. Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays,
      A. Intaniwet et al., ACS Appl Mater Interfaces. 2(6), 1692-9 (2010). doi: 10.1021/am100220y.
    7. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells,
      A. Lefrançois et al., Sci Rep. 2015; 5: 7768. doi: 10.1038/srep07768.