We ship worldwide. Spend or more for FREE tracked shipping to , normally .
For more information, please see our worldwide shipping page.
We ship worldwide. Tracked large item shipping to from . All other products ship free with the purchase of an Ossila Glove Box.
Make sure your lab is fully equipped and stock up on high-quality materials, accessories, and consumables with our large order discounts. Spend over £10,000 for a 10% discount.
Zn(BTZ)2, highly efficient electroluminescent material and ETL material for OLEDs
High-purity (>99.0%) and available online for priority dispatch
Bis(2-(2-hydroxyphenyl)benzothiazolate) zinc (II), Zn(BTZ)2, is one of the most studied high efficient electroluminescent material. It has also been widely used as an excellent electron transporting materials in OLEDs [1].
Zn(BTZ)2 exhibits an unusual broad electroluminescent (EL) emission and for this reason, a single-emitting component for white light emitting diodes can be fabricated by using Zn(BTZ)2 as emitting layer material [2]. It has also been reported that with an insertion of rubrene layer, the purity of the white light emitting of Zn(BTZ)2 can be improved [3].
General Information
CAS number
58280-31-2
Chemical formula
C26H16N2O2S2Zn
Molecular weight
517.94 g/mol
Absorption
λmax 287,334 nm (in CH2Cl2)
Fluorescence
λem 458 nm (in CH2Cl2)
HOMO/LUMO
HOMO = 5.41 eV, LUMO = 2.65 eV
Synonyms
Zn(BTZ)2
Bis[2-(2-benzothiazolyl-N3)phenolato-O]zinc
Bis(2-(2-hydroxyphenyl)benzothiazolate)zinc
Bis[2-(2-hydroxyphenyl)benzothiazolato]zinc(II)
Bis[2-(2-benzothiazoly)phenolato]zinc(II)
Classification / Family
Organometallic, OLEDs, White light emitter, Electron transport layer material (ETL), Materials science.
Product Details
Purity
Sublimed* >99.0%
Melting point
305-310 °C (lit.)
Color
Light Yellow Powder
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure
Chemical Structure of Bis(2-(2-hydroxyphenyl)benzothiazolate)zinc, Zn(BTZ)2
Structures, Electronic States, and Electroluminescent Properties of a Zinc(II) 2-(2-Hydroxyphenyl)benzothiazolate Complex, G. Yu et al., J. Am. Chem. Soc., 125 (48), 14816–14824 (2003).
Charge Carrier Transporting, Photoluminescent, and Electroluminescent Properties of Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate Complex, X. Xu, Chem. Mater.,19 (7), 1740–1748 (2007), DOI: 10.1021/cm062960b.
Effect of inserting of thin Rubrene layer on performance of Organic Light-Emitting Diodes based on Zn(BTZ)2, R. L. Tomova et al., J. Phys.: Conf. Ser., 253, 012048 (2010), doi:10.1088/1742-6596/253/1/012048.
White-Light-Emitting Material for Organic Electroluminescent Devices, Y. Hamada et al., Jpn. J. Appl. Phys. 35 L1339-L1341 (1996); http://iopscience.iop.org/1347-4065/35/10B/L1339.
Effect of A Series of Host Material on Optoelectronic Performance of Red Phosphorescent OLED, H. Li et al., Chin. J. Luminance, 5, 585-589, 2009.
White organic light-emitting devices using Zn(BTZ)2 doped with Rubrene as emitting layer,J. Zheng et al., Chin. Sci. Bull., 50, 509-513 (2005); DOI: 10.1360/04wb0050.
Influence of Dopant Concentration on Electroluminescent Performance of Organic White-Light-Emitting Device with Double-Emissive-Layered Structure, M. Wu et al., Chin. Phys. Lett., 25, 294-297 (2008).
White organic light-emitting diodes based on a novel Zn complex with high CRI combining emission from excitons and interface-formed electroplex, Y. Hao et al., Org. Electronics 12, 136–142 (2011).
The effect of small-molecule electron transporting materials on the performance of polymer solar cells, H. Du et al., Thin Solid Films, 519, 4357 (2011).
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.