We ship worldwide. Spend or more for FREE tracked shipping to , normally .
For more information, please see our worldwide shipping page.
We ship worldwide. Tracked large item shipping to from . All other products ship free with the purchase of an Ossila Glove Box.
Make sure your lab is fully equipped and stock up on high-quality materials, accessories, and consumables with our large order discounts. Spend over £10,000 for a 10% discount.
TSBPA, HTL material for blue PhOLEDs
High-purity (>99.0%) and available online for priority dispatch
4,4'-(Diphenylsilanediyl)bis(N,N-diphenylaniline) (TSBPA) is diphenylsilyl based with two electron donating triphenylamine units. For its electron rich nature, TSBPA is normally used as a high triplet energy hole transport material for blue phosphorescent organic light-emitting diodes (PHOLEDs).
Also due to its electron donating nature, TSBPA can also be used together with electron accepting materials to form exciplex as emitting layer materials. Green PhOLEDs based on TSBPA:PO-T2T exciplex showed TADF emission with close to the maximum theoretical power efficiency and EQE of 60.9 cd/A, 71 Im/W and 20% respectively.
General Information
CAS number
205327-13-5
Chemical formula
C48H38N2Si
Molecular weight
670.91 g/mol
Absorption
λmax 309 nm in DCM
Fluorescence
λem 376 nm in DCM
HOMO/LUMO
HOMO = 5.51 eV, LUMO = 2.30 eV, ET=2.9 eV [1]
Full chemical name
4,4'-(Diphenylsilanediyl)bis(N,N-diphenylaniline)
Synonyms
TSBPA
Classification / Family
Triphenylamine derivatives, Hole transport layer (HTL), Electron blocking layer (EBL), TADF exciplex materials, Phosphorescent organic light-emitting diodes (PHOLEDs), Sublimed materials
Product Details
Purity
Sublimed >99.0% (HPLC)
Melting point
mp = 213 °C, Tg = 84 °C
Appearance
White powder/crystals
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the sublimed materials for OLED devices page.
Chemical Structure
Chemical Structure of 4,4'-(Diphenylsilanediyl)bis(N,N-diphenylaniline) (TSBPA), CAS 205327-13-5
Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex, M. Chapran et al., ACS Appl. Mater. Interfaces, 11 (14), 13460–13471 (2019); DOI: 10.1021/acsami.8b18284.
Molecular Design Strategies for Color Tuning of Blue TADF Emitters, P. Stachelek et al., ACS Appl. Mater. Interfaces, 11, 27125−27133 (2019); DOI: 10.1021/acsami.9b06364.
Less Is More: Dilution Enhances Optical and Electrical Performance of a TADF Exciplex, M. Colella et al., J. Phys. Chem. Lett., 10, 793−798 (2019); DOI: 10.1021/acs.jpclett.8b0364.
Low driving voltage and high power efficiency in blue phosphorescent organic light-emitting diodes using aromatic amine derivatives with diphenylsilyl linkage, C. Lee et al., Synth. Met., 167 (1), 1-4 (2013); DOI: 10.1016/j.synthmet.2013.02.001.
Recent progress on exciplex-emitting OLEDs, H. Kim etal., J. Inf. Disp, 20 (3), 105-121 (2019); DOI: 10.1080/15980316.2019.1650838.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.