FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.

TSBPA


Product Code M2311A1
Price $301.00 ex. VAT

TSBPA, HTL material for blue PhOLEDs

High-purity (>99.0%) and available online for priority dispatch


4,4'-(Diphenylsilanediyl)bis(N,N-diphenylaniline) (TSBPA) is diphenylsilyl based with two electron donating triphenylamine units. For its electron rich nature, TSBPA is normally used as a high triplet energy hole transport material for blue phosphorescent organic light-emitting diodes (PHOLEDs).

Also due to its electron donating nature, TSBPA can also be used together with electron accepting materials to form exciplex as emitting layer materials. Green PhOLEDs based on TSBPA:PO-T2T exciplex showed TADF emission with close to the maximum theoretical power efficiency and EQE of 60.9 cd/A, 71 Im/W and 20% respectively.

General Information

CAS number 205327-13-5
Chemical formula C48H38N2Si
Molecular weight 670.91 g/mol
Absorption λmax 309 nm in DCM
Fluorescence λem 376 nm in DCM
HOMO/LUMO HOMO = 5.51 eV, LUMO = 2.30 eV, ET =2.9 eV [1]
Full chemical name 4,4'-(Diphenylsilanediyl)bis(N,N-diphenylaniline)
Synonyms TSBPA
Classification / Family Triphenylamine derivatives, Hole transport layer (HTL), Electron blocking layer (EBL), TADF exciplex materials, Phosphorescent organic light-emitting diodes (PHOLEDs), Sublimed materials

Product Details

Purity Sublimed >99.0% (HPLC)
Melting point mp = 213 °C, Tg = 84 °C
Appearance White powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the sublimed materials for OLED devices page.

Chemical Structure

Chemical structure of tsbpa, cas# 205327-13-5
Chemical Structure of 4,4'-(Diphenylsilanediyl)bis(N,N-diphenylaniline) (TSBPA), CAS 205327-13-5

Device Structure(s)

Device structure ITO/ NPB (30 nm)/TSBPA (10 nm)/TSBPA:POT2T (20nm)/PO-T2T(50 nm)/LiF(1 nm)/Al (100 nm) [1]
Colour green light emitting device Green
Max. Luminance 31,000 cd/m2
Max. EQE 20.0%
Max. Current Efficiency 60.9 cd/A
Max. Power Efficiency 71.0 Im/W
Device structure ITO/NPB (40 nm)/TSBPA (10 nm)/DDMA-TXO2 (I):DPEPO (30 nm)/DPEPO (10 nm)/TPBi (40 nm)/LiF/Al [2]
Colour blue light emitting device Blue
Max. Luminance 4,204 cd/m2
Max. EQE 21.2%
Max. Current Efficiency 36.8 cd/A
Max. Power Efficiency 27.5 Im/W
Device structure ITO/NPB (40 nm)/TSBPA (10 nm)/DDMA-TXO2 (III):DPEPO (30 nm)/DPEPO (10 nm)/TPBi (40 nm)/LiF/Al [2]
Colour blue light emitting device Blue
Max. Luminance 2,765 cd/m2
Max. EQE 22.6%
Max. Current Efficiency 31.7 cd/A
Max. Power Efficiency 24.3 Im/W
Device structure ITO/NPB (40 nm)/TSBPA (10 nm)|TSBPA:PO-T2T 1:1 in 50 vol % UGH-3 (40 nm)|POT2T (50 nm)|LiF (1 nm)|Al (100 nm) [3]
Colour green light emitting device Green
Max. EQE 19.2 %

Pricing

Grade Order Code Quantity Price
Sublimed(>99.0% purity) M2311A1 250 mg £231.00
Sublimed(>99.0% purity) M2311A1 500 mg £370.00
Sublimed(>99.0% purity) M2311A1 1 g £593.00

MSDS Documentation

TSBPA MSDSTSPBA MSDS sheet

Literature and Reviews

  1. Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex, M. Chapran et al., ACS Appl. Mater. Interfaces, 11 (14), 13460–13471 (2019); DOI: 10.1021/acsami.8b18284.
  2. Molecular Design Strategies for Color Tuning of Blue TADF Emitters, P. Stachelek et al., ACS Appl. Mater. Interfaces, 11, 27125−27133 (2019); DOI: 10.1021/acsami.9b06364.
  3. Less Is More: Dilution Enhances Optical and Electrical Performance of a TADF Exciplex, M. Colella et al., J. Phys. Chem. Lett., 10, 793−798 (2019); DOI: 10.1021/acs.jpclett.8b0364.
  4. Low driving voltage and high power efficiency in blue phosphorescent organic light-emitting diodes using aromatic amine derivatives with diphenylsilyl linkage, C. Lee et al., Synth. Met., 167 (1), 1-4 (2013); DOI: 10.1016/j.synthmet.2013.02.001.
  5. Recent progress on exciplex-emitting OLEDs, H. Kim etal., J. Inf. Disp, 20 (3), 105-121 (2019); DOI: 10.1080/15980316.2019.1650838.

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top