FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.


Product Code M651
Price $238.00 ex. VAT

TPBi, ETL material for optoelectronic devices

Low price and available online for fast and secure dispatch

2,2',2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TPBi, being electron deficient, is normally used as electron transport layer material in optoelectronic devices. Having a low LUMO energy level (2.7 eV), TPBi is also used as host material for both fluorescent and phosphorescent light emitting systems.

In some cases, TPBI is used to replace CBP (HBL)/Alq3 (ETL) to simplify the device structure for its excellent electron transporting and also its hole blocking abilities with very deep HOMO energy level (HOMO = 6.2/6.7 eV). It has also been reported that TPBi could be used as electron injection layer material between Alq3 (ETL) and Cs2O3/Al (electrode). It suggested that TPBI thin layer at the Alq3/Cs2O3 interface facilitates the electron injection and is also involved with hole-blocking and exciton confinement [3].

TPBi from Ossila was used in a high-impact paper (IF 15.88)

TPBi from Ossila was used in the high-impact paper (IF 15.88), Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes, C. Zou et al., ACS Nano, 14, 6076−6086 (2020); DOI: 10.1021/acsnano.0c01817.

General Information

CAS number 192198-85-9
Chemical formula C45H30N6
Molecular weight 654.76 g/mol
Absorption λmax 305 nm in THF
Fluorescence λem 370 nm in THF
HOMO/LUMO HOMO 6.2/6.7 eV, LUMO 2.7 eV [1, 2]
Synonyms 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)
Classification / Family

Benzimidazole derivatives, Electron transport layer materials (ETL), Electron injection layer materials (EIL), Hole blocking layer materials (HBL), Fluorescent and phosphorescent host materials.

Light-Emitting Diodes, Organic electronics

Product Details


Sublimed* >99.5%

Unsublimed* >98.0%
Melting point 272 - 277 °C (lit.)
Colour White Powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

chemcial structure of TPBi
Chemical Structure of 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TPBi

Device Structure(s)

Device structure ITO/MoO3(1 nm)/mCP (60 nm)/mCP:TPBi:Ir(tfmppy)2(tpip)* (20 nm, 1:1, 6 wt%)/TPBi (15 nm)/TPPhen:W2(hpp)4* (45 nm, 12 wt%)/Al (100 nm) [2]
Colour Green green light emitting device
Max. EQE 20.8%
Max. Current Efficiency 72.9 cd/A
Max. Power Efficiency 66.3 lm W1  
Device structure ITO/PEDOT:PSS/PFO:MEH-PPV (1.0 wt%)/TPBi/LiF/Al [4]
Colour White white light emitting device
Max. Luminance 7,560  cd/m2
Max. Current Efficiency 7.8 cd/A
Device structure ITO/α-NPD (30 nm)/TCTA (20 nm)/CzSi* (10 nm)/10 wt% DMOC-DPS:DPEPO* (20 nm)/DPEPO (10 nm)/TPBI (30 nm)/LiF (0.5 nm)/Al [5]
Colour Blue blue light emitting device
Max. Luminance 2,544  cd/m2
Max. EQE       ≥ 14.5%
Device structure ITO/NPB/rubrene in p-DMDPVBi:NPB/TPBi/LiF/Al [6]
Colour White white light emitting device
Max. Luminance 18,100  cd/m2
Max. Current Efficiency 10.6 cd/A
Device structure ITO/PEDOT:PSS/P2*/TPBi/LiF/Al [7]
Colour Deep Blue deep blue light emitting device
Max. Luminance 274  cd/m2
Max. EQE 3.9%
Max. Current Efficiency 1.3 cd/A
Max. Power Efficiency 0.99 lm W
Device structure ITO/NPB (30 nm)/CBP:Ir(ppy)3 (20 nm)/TPBi:Ir(ppy)3 (10 nm)/TPBi (10 nm)/TPBi:LiF (40 nm)/LiF (1.2 nm)/Al(150 nm) [10]
Colour Green green light emitting device
Max. Luminance 66,820 cd/m2
Max. Current Efficiency 40.5 cd/A
Max. Power Efficiency 23.7 lm W1  
Device structure Al/MoO3 (3 nm)/mCP (50 nm)/Ir(tfmppy)2(tpip)* (0.5 nm)/TPBi (2.5 nm)/mCP (2.5 nm)/Ir(tfmppy)2(tpip) (0.5 nm)/TPBi (10 nm)/Bphen (45 nm)/Liq (1 nm)/Al (1 nm)/Ag (22 nm)/mCP (80 nm) [11]
Colour Green green light emitting device
Max. Current Efficiency 126.3 cd/A
Device structure  ITO/m-MTDATA (30 nm)/NPB (20 nm)/TPBI:4 wt% Ir(ppy)3:2 wt%Ir(piq)2(acac) (30 nm)/ Alq3 (20 nm)/LiF/Al [12]
Colour White white light emitting device
Max. Luminance 33,012 cd/m2
Current Efficiency@100  cd/m2 15.3 cd/A
Max. Powder Efficiency 10.7 lm W1

*For chemical structure information please refer to the cited references


Grade Order Code Quantity Price
Sublimed (>99.5% purity) M651 250 mg £190
Unsublimed (>98.0% purity) M652 500 mg £200
Sublimed (>99.5% purity) M651 500 mg £300
Unsublimed (>98.0% purity) M652 1 g £320
Sublimed (>99.5% purity) M651 1 g £480

MSDS Documentation


Literature and Reviews

  1. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport, T. D. Anthopoulos et al., Appl. Phys. Lett., 82, 4824 (2003); doi: 10.1063/1.1586999.
  2. High efficiency green phosphorescent organic light-emitting diodes with a low roll-off at high brightness, J. Wang et al., Org. Electronics, 14, 2854–2858 (2013).
  3. Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs, J. Lian et al., Chin. Phys. Lett., 28, 047803 (2011).
  4. Improving light efficiency of white polymer light emitting diodes by introducing the TPBi exciton protection layer, S. B. Shin et al., Thin Solid Films 517, 4143–4146 (2009). doi:10.1016/j.tsf.2009.02.027.
  5. High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter, S. Wu et al., J. Mater. Chem. C, 2, 421 (2014). DOI: 10.1039/c3tc31936a.
  6. Co-Host Comprising Hole-Transporting and Blue-Emitting Components for Efficient Fluorescent White OLEDs, Y-C. Chen et al., J. Electrochem. Soc., 159 (4) J127-J131 (2012); doi: 10.1149/2.092204jes.
  7. Fluorene co-polymers with high efficiency deep blue electroluminescence, J. Santos et al., J. Mater. Chem. C, 3, 2479 (2015); DOI: 10.1039/c4tc02766c.
  8. High efficiency and low efficiency roll off in white phosphorescent organic lightemitting diodes by managing host structures, K. S. Yook et al., Appl. Phys. Lett., 92, 193308 (2008); doi: 10.1063/1.2929742.
  9. High efficiency green phosphorescent organic light emitting device with (TCTA/TCTA0.5TPBi0.5/TPBi): Ir(ppy)3 emission layer, J. G. Jang et al., Thin Solid Films 517, 4122–4126 (2009). doi:10.1016/j.tsf.2009.02.015.
  10. Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime, Q. Yang et al., Syn. Metals 162, 398– 401 (2012). doi:10.1016/j.synthmet.2011.12.027.
  11. High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer, X. Shi et al., Org. Electronics, 15, 2408–2413 (2014).
  12. High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer, W. Xie et al., Semicond. Sci. Technol. 20, 326–329 (2005); doi:10.1088/0268-1242/20/3/013.
  13. Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes, C. Zou et al., ACS Nano, 14, 6076−6086 (2020); DOI: 10.1021/acsnano.0c01817.

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top