TFB
CAS Number 220797-16-0
Interface Polymers, Perovskite Interface Materials, Perovskite Materials, Semiconducting Polymers
Quality assured
Expert support
Volume discounts
Worldwide shipping
Fast and secure
TFB, semiconducting polymer with high mobility
HTL and HIL material for organic electronic devices
Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB) is a triarylamine based semiconductor with a band gap of 3.0 eV (HOMO and LUMO levels of 5.3 eV and 2.3 eV, respectively) and a relatively high hole mobility of 2 ×10-3 cm2 V-1 s-1.

TFB from Ossila was used in the high-impact paper (IF 38.77), Rational molecular passivation for high-performance perovskite light-emitting diodes, W. Xu et al., Nat. Photonics, 13, 418–424 (2019); DOI: 10.1038/s41566-019-0390-x.
Due to its low ionisation potential and high hole mobility, TFB serves primarily as hole transport layer (HTL), hole-injection layer (HIL) and electron-blocking layer (EBL) material in organic electronic devices. When built into device as an interface material, TFB as an electron blocking layer will not only reduce the chance of electron leakage, but also reduce the possibility of exciton quenching between the interface of the active layer and charge transport layer (F8BT/MoOx for example).
General Information
CAS Number | 220797-16-0 |
---|---|
Chemical Formula | (C51H61N)n |
Absorption* | λmax 390 nm (in THF) |
Fluorescence | λem 295 nm, 435 nm (in THF) |
HOMO/LUMO | HOMO = 5.3 eV, LUMO = 2.3 eV |
Solvents | THF, Toluene and Chloroform |
Synonyms | Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) |
Classification / Family | Hole transport material (HTL), Hole injection material (HIL), Electron blocking material (EBL), OLEDs, Perovskite solar cells, Organic and printed electronics |
* Measurable with the Ossila Optical Spectrometer, see our spectrometers and spectrometry accessories for more information.
Product Details
Purity | >99% |
---|---|
Melting Point | N/A |
Colour | Pale yellow powder/fibers |
Chemical Structure

Device Structure(s)
Device Structure | ITO (120 nm)/PEDOT:PSS(50 nm)/TFB (5 nm)/PYGTPA* (75 nm)/PEGPF* (10 nm)/Ca (10 nm)/Al (100 nm) [1] |
---|---|
Colour |
![]() |
Max. luminance | 9,242 cd/m2 |
Max. Current Efficiency | 0.85 cd/A |
Bias | 4.3 V |
Device Structure | ITO/c-ZnO (50 nm)/F8BT (80 nm)/MoO3 (10 nm)/Au (50 nm) [2] | ITO/c-ZnO (50 nm)/F8BT (80 nm)/TFB (60 nm)/MoO3 (10 nm)/Au (50 nm) [2] |
---|---|---|
Colour |
![]() |
![]() |
Max. luminance | 9,370 cd/m2 | 16,460 cd/m2 |
Max. Current Efficiency | 0.34 cd/A | 0.93 cd/A |
Bias | ~0.60 V | ~0.87 V |
Device Structure | ITO/ZnO/CsPbI3/TFB (60 nm)/MoO3 (5 nm)/Ag (80 nm) [3] |
---|---|
Colour |
![]() |
Max. Luminance | 206 cd/m2 |
Max. EQE | 5.7% |
*For chemical structure informations please refer to the cited references.
MSDS Documentation
Pricing
Batch | Quantity | Price |
---|---|---|
M0981A | 100 mg | £280 |
M0981A | 250 mg | £560 |
M0981A | 500 mg | £900 |
Batch details
Batch Number* | Mw | Mn | PDI | Stock Info |
---|---|---|---|---|
M0981A1 | 42 kDa | 16.8 kDa | 2.5 | Discontinued |
M0981A2 | 40 kDa | 13.8 kDa | 2.9 | Discontinued |
M0981A3 | 50 kDa | 30 kDa | 1.65 | In Stock |
*Older batch information available on request.
Literature and Reviews
- All-solution-processed multilayer polymer/dendrimer light emitting diodes, M. Auer-Berger et al., Org. Electronics, 35, 164-170 (2016); http://dx.doi.org/10.1016/j.orgel.2016.04.044.
- High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation, D. Kabra et al., Adv. Mater., 20, 3447–3452 (2008); DOI: 10.1002/adma.200800202.
- Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method, G. Li et al., adv. Mater., 28, 3528–3534 (2016); DOI: 10.1002/adma.201600064.
- A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes, H. Yan et al., Appl. Phys. Lett., 84, 3873 (2004); doi: 10.1063/1.1737791.
- Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes, J-S. Kim et al., Appl. Phys. Lett., 87, 023506 (2005); doi: 10.1063/1.1992658.
To the best of our knowledge the information provided here is accurate. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. Products may have minor cosmetic differences (e.g. to the branding) compared to the photos on our website. All products are for laboratory and research and development use only.