We ship worldwide. Spend or more for FREE tracked shipping to , normally .
For more information, please see our worldwide shipping page.
We ship worldwide. Tracked large item shipping to from . All other products ship free with the purchase of an Ossila Glove Box.
Make sure your lab is fully equipped and stock up on high-quality materials, accessories, and consumables with our large order discounts. Spend over £10,000 for a 10% discount.
TBRb, yellow dopant material in TADF-OLEDs
High purity dopant used to improve device performance
A family member of tetracene, 2,8-Di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb) has been widely used as a yellow dopant material in TADF-OLEDs. It is popular because of its bipolar characteristics.
The greater hindrance introduced by four tetra-tert-butyl bulky steric groups (attached to the benzene rings of rubrene) is believed to reduce the chances of concentration-quenching by effectively preventing inter-molecular aggregation of the dopant molecules. In return, this can improve device performance (e.g. in terms of external quantum efficiencies, overall power efficiencies, and lifetime).
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Highly efficient yellow and white organic electroluminescent devices doped with 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12 diphenylnaphthacene, T-H. Liu et al., Appl. Phys. Lett. 85, 4304 (2004); doi: 10.1063/1.1803911.
High efficiency fluorescent white organic light-emitting diodes having a yellow fluorescent emitter sensitized by a blue thermally activated delayed fluorescent emitter, W. Song et al., Org. Electron., 23, 138–143 (2015); doi: 10.1016/j.orgel.2015.04.016.
Highly Efficient, Conventional, Fluorescent Organic Light-Emitting Diodes with Extended Lifetime, H. Kim et al., Adv. Mater., 29, 1702159 (2017); DOI: 10.1002/adma.201702159.
Host Engineering for High Quantum Efficiency Blue and White Fluorescent Organic Light-Emitting Diodes, W. Song et al., Adv. Mater., 27, 4358–4363 (2017); DOI: 10.1002/adma.201501019.
Exciton-Adjustable Interlayers for High Efficiency, Low Efficiency Roll-Off, and Lifetime Improved Warm White Organic Light-Emitting Diodes (WOLEDs) Based on a Delayed Fluorescence Assistant Host, Z. Wang et al., Adv. Funct. Mater., 28, 1706922 (2018); DOI: 10.1002/adfm.201706922.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.