FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.

PTQ10


Product Code M2283A1-100mg
Price $438.00 ex. VAT

PTQ10, highly efficient polymer semiconductor

Low cost, high purity polymer available online for fast, secure dispatch


PTQ10 is a donor–acceptor (D–A) type copolymer with a simple thiophene ring as the electron donor unit and quinoxaline (QX) as electron acceptor unit. The alkoxy side chain attached on quinoxaline unit is to promote solubility and to enhance absorption of the targeted polymer. Difluoro substituted quinoxaline can further down-shift the HOMO energy level, achieve fast charge separation and low nonradiative recombination loss in the PSCs leading to high VOC and JSC.

Comparing with some other polymer semiconducting materials, PTQ10 has a simple structure which could lead to mass production with low cost. PTQ10 can also be processed in solution with eco-friendly non-halogenated solvents, i.e. o-xylene. The combined effects of high efficiency, low cost and green solvents processibility makes PTQ10 an ideal candidate for large scale doctor-blading and inkjet printing device fabrications.

Organic polymer solar cells based on PTQ10:Y6 blend shows efficient charge separation, higher photoluminescence quenching efficiency and higher charge mobilities, giving a power conversion efficiency of 16.53%.

Device structure: ITO (indium tin oxide)/PEDOT:PSS/PTQ10:Y6/PDINO/A1 [1]

Thickness (nm) VOC (V) JSC (mA cm-2) FF (%) PCE (%)
110 nm 0.826 26.65 75.1 16.53

 

Luminosyn™ PTQ10

Luminosyn™ PTQ10 is now available.

High purity
PTQ10 is purified by Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere

Batch-specific GPC data
Batch specific GPC data is always available for your thesis or publication

Large-quantity orders
Plan your experiments with confidence with polymers from the same batch

General Information

Full name Poly [[6,7-difluoro[(2-hexyldecyl)oxy]-5,8-quinoxalinediyl]-2,5-thiophenediyl ]]
Synonyms PTQ10
Chemical formula (C28H36F2N2OS)n
CAS number 2270233-86-6
UV-Vis absorption λmax 556 nm, 600 nm in CB as-cast film
HOMO / LUMO HOMO = -5.54 eV, LUMO = -2.98 eV [1]
Solubility o-xylene, chloroform, chlorobenzene and dichlorobenzene
Processing solvent o-xylene, chloroform, chlorobenzene
Classification / Family Organic semiconducting materials, Wide band-gap polymers, Organic Photovoltaics, Polymer solar cells, NF-PSCs, All-polymer solar cells (all-pscs), Clean energy materials.

Chemical Structure

PTQ10 chemical structure
Chemical structure of PTQ11

MSDS Documentation

PTQ10 MSDSPTQ10 MSDS sheet

Pricing

Batch Quantity Price
M2283A1 100 mg £350
M2283A1 250 mg £700
M2283A1 500 mg £1200
M2283A1 1 g £2300
M2283A1 5 g / 10 g* Please enquire

*for 5 - 10 grams order quantity, the lead time is 4-6 weeks.

Batch details

Batch Mw Mn PDI Stock Info
M2283A1 62,379 35,445 1.76 In stock

Literature and Reviews

  1. Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%, Y. Wu et al., Sci China Chem., 63: 265–271 (2020); DOI: 10.1007/s11426-019-9599-1.
  2. Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for High-Efficiency Polymer Solar Cells, C. Sun et al., Adv. Mater., 31, 1905480 (2019); DOI: 10.1002/adma.201905480.
  3. Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells, H. Cha et al., Adv. Energy Mater., 10 (38) 2001149 (2020); DOI: 10.1002/aenm.202001149.
  4. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%, L. Meng et al., J. Am. Chem. Soc., 140, 49, 17255–17262 (2018); DOI: 10.1021/jacs.8b10520.
  5. A low cost and high performance polymer donor material for polymer solar cells, C. Sun et al., Nat. Communications, 9, 743 (2018); DOI: 10.1038/s41467-018-03207-x.

Characterisations

UV-Vis Absorption

UV-Vis absorption of PTQ10 in film
UV-Vis absorption of of PTQ10 in film (as-cast film from PTQ10 solution in chlorobenzene on glass).

Cyclic Voltammetry

cyclic voltammetry ptq10
Cyclic voltammograms of the PTQ10 film on platinum electrode in 0.1M Bu4NClO4 in acetonitrile at a scan rate of 100 mV s−1.

The cyclic voltammograms (CV) measurements were recorded on Ossila Potentiostat by using a three-electrode system with platinum disc as the working electrode, platinum wire as the counter electrode, Ag/Ag+ electrode as the reference electrode with a scanning rate of 100 mV/s in a 0.1 M tetrabutylammonium perchloroate Bu4NClO4) solution. The potential of Ag/Ag+ reference electrode was internally calibrated by using ferrocene/ferroncenium (Fc/Fc+) as the redox couple.


To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top