PO-T2T
All Semiconducting Molecules, Materials, OLED Host Materials, Sublimed Materials, TADF Materials, Transport Layer Materials
High purity PO-T2T, low price with additional savings for quantities of 5 g or more
Popular TADF host and exciplex material, also used as transport layer material in organic electronic devices
PO-T2T, known in full as 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine, is an electron deficient semiconducting molecule with a triazine centre and three diphenylphosphines.
Exciplex-forming with other electron donating host materials such as mCP, PO-T2T is a popular TADF host material with a high triplet energy level. The forming of exciplexes between mCP and PO-T2T is efficient, as is the energy transfer from such an exciplex to a blue phosphorescent dopant such as FIrpic. This enables triplet harvesting without energy loss.
Because of its electron-deficient nature with a deep highest occupied molecular orbital (HOMO = 7.55 eV), PO-T2T is also used as electron transport layer (ETL) / hole blocking layer (HBL) material in organic electronic devices.
Together with other electron donating materials, PO-T2T as universal exciplex hosts with improved device lifetime, efficiency and lower driving voltage.
Guest | Exciplex Host | Color | Efficiencies | DOI |
FIrPic | mCBP:PO-T2T | Sky-Blue Phosphorescent | EQE: 34.1% Max. PE: 79.6 lm W−1 |
10.1002/adma.201506065 |
4CzIPN | CBP:PO-T2T | Green TADF | EQE: 20.0% Max. PE: 62.1 lm W−1 |
10.1016/j.orgel.2019.06.001 |
Ir(mphmq)2tmd | NPB:PO-T2T | Red phosphorescent | EQE: 34.1% Max. PE: 62.2 lm W−1 |
10.1021/acsami.6b14438 |
2CzPN, AnbTPA | CDBP:PO-T2T | White TADF | EQE: 19.2% Max. PE: 46.2 lm W−1 |
10.1016/j.orgel.2017.08.024 |
Highly efficient thermally activated delayed fluorescence (TADF) exhibiting high reverse intersystem crossing (RISC) yields by using PO-T2T as the acceptor unit to form exciplex emitting layer.
Exciplex Emission Layer | Color | Efficiencies | DOI |
DMAC-DPS:PO-T2T | 536 nm to 496 nm | EQE: 10.4–12.1% Max. PE: 24.2–39.5 lm W−1 |
10.1016/j.optmat.2020.110779 |
MAC:PO-T2T | Green TADF | EQE: 17.8% Max. PE: 45.5 lm W−1 |
10.1002/adfm.201505014 |
TSBPA:PO-T2T | Green TADF | EQE: 14.8% |
10.1021/acs.jpclett.8b03646 |
Ir(ppy)3:PO-T2T | Red TADF | EQE: 5% | 10.3389/fchem.2019.00016 |
General Information
CAS number | 1646906-26-4 |
---|---|
Chemical formula | C57H42N3O3P3 |
Molecular weight | 909.80 g/mol |
Absorption | λmax 272 nm (in DCM) |
Fluorescence | λem 295 nm, 378 nm(in DCM) |
HOMO/LUMO | HOMO = 7.55 eV, LUMO = 3.50 eV [1]; ET= 2.99 eV |
Full chemical name | 2,4,6-Tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine |
Synonyms | POT2T |
Classification / Family | Triazine derivatives, TADF exciplex co-host, phosphorescent organic light-emitting devices (PHOLEDs), TADF phosphorescent host, electron transport layer materials, sublimed materials |
Product Details
Purity | Sublimed* >99.5% (HPLC) |
---|---|
Melting point | TGA 460 °C (0.5% weight loss) |
Appearance | Off-white powder/crystals |
* Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the sublimed materials for OLED devices page.
Chemical Structure

Device Structure(s)
Device structure | ITO/MoO3(10 nm)/TAPC:MoO3 (20.0%, 50 nm)/CDBP (10 nm)/ dCDBP:PO-T2T:PO-01 (1:1, 0.3%, 20 nm)/PO-T2T (10 nm)/PO-T2T:Li2CO3 (3%,45 nm)/Li2CO3 (1 nm)/Al (100 nm) [2] |
---|---|
Colour | White ![]() |
Max. Current Efficiency | 88.7 cd/A |
Max. EQE | 28.3 % |
Max. Power Efficiency | 102.9 Im/W |
Device structure | ITO/PEDOT:PSS (30 nm)/TPAC (20 nm)/mCP (15 nm)/ mCP:PO-T2T (1:1, 20 nm)/PO-T2T (45 nm)/Liq (1 nm)/Al (1 nm)/MoO3(5 nm)/DTAF (20 nm)/DTAF:PO-T2T (1:1, 20 nm)/PO-T2T(50 nm)/Liq (0.5 nm)/Al (100 nm). [3] |
---|---|
Colour | White ![]() |
Max. Current Efficiency | 27.7 cd/A |
Max. EQE | 11.6 % |
Max. Power Efficiency | 15.8 Im/W |
Device structure | ITO/4% ReO3: mCP (60 nm)/ mCP (15 nm)/ CN-Cz2:PO-T2T (1:1 w%) (20 nm)/PO-T2T (10 nm)/CN-T2T (40 nm)/Liq (0.5 nm)/Al (100 nm). [4] |
---|---|
Colour | White ![]() |
Max. Current Efficiency | 37.8cd/A |
Max. EQE | 16% |
Max. Power Efficiency | 47.5 Im/W |
Device structure | ITO/MoO3 (3nm)/TAPC (35 nm)/CBP:TTM-3PCz (3.0 wt %) (25 nm)/B3PYMPM (10 nm)/PO-T2T (70 nm)/LiF (0.8 nm)/Al (100 nm) [5] |
---|---|
Colour | Deep-red, NIR ![]() |
Max. EQE | 26.5% |
Pricing
Quantity | Grade | Product Code | Price |
---|---|---|---|
100 mg | Sublimed (>99.5% purity) | M2266A1 | £160 |
250 mg | Sublimed (>99.5% purity) | M2266A1 | £320 |
500 mg | Sublimed (>99.5% purity) | M2266A1 | £520 |
1 g | Sublimed (>99.5% purity) | M2266A1 | £850 |
5 g (most popular) | Sublimed (>99.5% purity) | M2266A1 | £1850 |
10 g | Sublimed (>99.5% purity) | M2266A1 | £3100 |
25 g | Sublimed (>99.5% purity) | M2266A1 | £7000 |
Please contact us for quantities over 50g and up to 1kg.
MSDS Documentation
Literature and Reviews
- An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage, J-H. Lee et al., Adv. Funct. Mater., 25 (3), 361-366 (2014); DOI: 10.1002/adfm.201402707.
- Precise Exciton Allocation for Highly Efficient White Organic Light-Emitting Diodes with Low Efficiency Roll-Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission, Z. Wu et al., Adv. Optical Mater., 1700415 (2017); DOI: 10.1002/adom.201700415.
-
The First Tandem, All-exciplex-based WOLED, W. Hung et al., Sci. Rep., 4, 5161 (2014); DOI: 10.1038/srep05161.
- Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes, T-C. Lin et al., Nature Commun., 9, 3111 (2018) DOI: 10.1038/s41467-018-05527-4.
-
Efficient radical-based light-emitting diodes with doublet emission, X. Ai et al., Nature 563, 536–540(2018); DOI: 10.1038/s41586-018-0695-9.
- High-efficiency organic light-emitting diodes with exciplex hosts, Q. Wang et al., J. Mater. Chem. C, 7, 11329 (2019); DOI: 10.1039/c9tc03092a.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. Products may have minor cosmetic differences (e.g. to the branding) compared to the photos on our website. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, military, pharmaceuticals, cosmetics, food, or commercial applications.