FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

Product Code M2051A2-100mg
Price $525 ex. VAT

Quality assured

Expert support

Volume discounts

Worldwide shipping

Fast and secure


PDPP4T-2F, semiconducting polymer with deep HOMO level

High quality polymer available for fast, secure dispatch


PDPP4T-2F is the fluorinated version of PDPP4T with a device performance PCE of 7.59% [1].

In comparison to PDPP4T, PDPP4T-2F has a deeper highest-occupied molecular orbital (HOMO) level, due to the electron-withdrawing nature of the fluorine atoms on the thiophene units. It has also been reported that apart from being more favorable for realising higher Voc due to its deeper HOMO energy level, PDPP4T-2F shows great potential in achieving a higher Jsc than PDPP4T in devices for its improved extinction coefficient.

General Information

Full name Poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione -3,6-diyl)-alt-(3'',​4'-​difluoro[2,2’;5’,2’’;5’’,2’’’-quaterthiophen]-5,5’’’-diyl)]
Synonyms PFDPP4T, PDQT-2F
CAS number n/a
Chemical formula (C62H88F2N2O2S4)n
Molecular weight See Batch Details table
HOMO / LUMO HOMO = ~ 5.22 eV, LUMO = ~ 3.66 eV [3]
Solubility Dichlorobenzene, chlorobenzene, chloroform
Classification / Family Quaterthiophene, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic photovoltaics, Polymer solar cells, OFETs
PDPP4T-2F chemical structure
Chemical structure of PDPP4T-2F

MSDS Documentation

PDPP4T-2F MSDSPDPP4T-2F MSDS sheet

Batch Details

Batch Mw Mn PDI Stock Info
M2051A1 173,151 63,296 2.74 Out of stock
M2051A2 70.758 33,458 2.11 In Stock


Literature and Reviews

  1. Sequential Deposition: Optimization of Solvent Swelling for High-Performance Polymer Solar Cells, Y. Liu et al., ACS Appl. Mater. Interfaces, 7, 653-661 (2015); DOI: 10.1021/am506868g.
  2. Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors, A. Zhang et al., Macromolecules, 49 (17), 6431–6438 (2016); DOI: 10.1021/acs.macromol.6b01446.
  3. Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Low-Band-Gap Polymer with Fine-Tuned Properties, Z. Zheng et al., Adv. Mater., 28, 5133–5138 (2016); DOI: 10.1002/adma.201600373.

To the best of our knowledge the information provided here is accurate. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. Products may have minor cosmetic differences (e.g. to the branding) compared to the photos on our website. All products are for laboratory and research and development use only.

Return to the top