PBDB-T-2F (PM6)
All Semiconducting Polymers, Green Energy Materials, Luminosyn™ Polymers, Materials, OPV Polymer Donors
PM6, for high performance OPV devices
High purity and available for priority dispatch
PBDB-T-2F is a PBDB-T family member and, like others, has a high OPV device performance. Polymer solar cells with PBDB-T-2F as the donor and ITIC-2F as the acceptor have achieved a power conversion efficiency (PCE) of over 13%.
By introducing two fluorine atoms to each thiophene unit of the benzodithiophene (BDT) side chains in PBDB-T, the HOMO/LUMO energy levels are pulled. Complete phase separation is observed in the PBDB-T-2F:ITIC-2F blend due to the distinct surface tension difference between PBDB-T-2F and ITIC-2F, resulting in a high domain purity in the blend.
A certified efficiency of 14.9% has been demonstrated using PBDB-T-2F (PM6) as the electron donor and Y6 as an acceptor in a single junction non-fullerene polymer solar cell (NF-PSC) [2].

PBDB-T-2F from Ossila was used in the high-impact paper (IF 18.81), Stretchable and Transparent Conductive PEDOT:PSS-Based Electrodes for Organic Photovoltaics and Strain Sensors Applications, E. Dauzon et al., Adv. Fun. Mater., 30 (28), 2001251 (2020); DOI: 10.1002/adfm.202001251.
Luminosyn™ PBDB-T-2F
Luminosyn™ PBDB-T-2F is now available.High purity
PBDB-T-2F is purified via Soxhlet extraction with acetone, hexane, and chlorobenzene under an argon atmosphere
Large quantity orders
Plan your experiments with polymers from the same batch
General Information
Full name | Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)] |
Synonyms | PBDB-T-F, PBDB-TF, PM6 |
Chemical formula | (C68H76F2O2S8)n |
CAS number | 1802013-83-7 |
HOMO / LUMO | HOMO = -5.45 eV, LUMO = -3.65 eV [1] |
Solubility | Chloroform, chlorobenzene and dichlorobenzene (solution processing solvent chlorobenzene or dichlorobenzene) |
Classification / Family | Organic semiconducting materials, Medium bandgap polymers, Organic photovoltaics, Polymer solar cells, Perovskite solar cells, Hole-transport layer materials, NF-PSCs, All-polymer solar cells (all-PSCs). |
Chemical Structure

MSDS Documentation
Pricing
Batch | Quantity | Price |
M2150A | 100 mg | £400 |
M2150A | 250 mg | £800 |
M2150A | 500 mg | £1300 |
M2150A | 1 g | £2400 |
Batch details
Batch* | Mw | Mn | PDI | Stock Info |
M2150A5 | 126,690 | 60,551 | 2.09 | Discontinued |
M2150A6 | 107,004 | 29,644 | 3.61 | Discontinued |
M2150A7 | 100,180 | 44,778 | 2.24 | Discontinued |
M2150A8** | 81,082 | 36,635 | 2.22 | Discontinued |
M2150A9** | 72,090 | 27,534 | 2.62 | In stock |
*Older batch information available on request.
** M2150A8 and M2150A9 are also soluble in o-xylene at a concentration of 8 mg/ml, Please refer to technical data for further information.
Literature and Reviews
- Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors, H. zhang et al., Adv.Mater., 30, 1800613 (2018); DOI: 10.1002/adma.201800613.
- Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, J. Yuan et al., Joule (2019); doi: 10.1016/j.joule.2019.01.004.
- Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor, S. Zhang et al., Adv. Mater., 30, 1800868 (2018); DOI: 10.1002/adma.201800868.
- High efficiency non-fullerene organic solar cells without electron transporting layers enabled by Lewis base anion doping, R. Wang et al., Nano Energy 51, 736–744 (2018) ; doi: org/10.1016/j.nanoen.2018.07.022.
- Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials, Y. Zhang et al., Sci. China Chem., 61 (10), 1328–1337 (2018); doi: 10.1007/s11426-018-9260-2.
- Highly Efficient Flexible Polymer Solar Cells with Robust Mechanical Stability, L. Tan et al., Adv. Sci., 1801180 (2019); DOI: 10.1002/advs.201801180 .
- 15% Efficiency Tandem Organic Solar Cell Based on a Novel Highly Efficient Wide‐Bandgap Nonfullerene Acceptor with Low Energy Loss, G. Liu et al., Adv. Energy Mater., 1803657 92019); DOI: 10.1002/aenm.201803657.
Technical Data
Product Code | Soluble solvents | Recommended Processing Solvents at 10mg/ml |
M2150A4 | Chloroform, chlorobenzene and dichlorobenzene | Chlorobenzene |
M2150A5 | Chlorobenzene and dichlorobenzene | Dichlorobenzene |
M2150A7 | Chloroform, chlorobenzene and dichlorobenzene | Dichlorobenzene or Chlorobenzene:dichlorobenzene (v/v = = 1:1) |
M2150A8 and M2150A9 |
o-Xylene, chloroform, chlorobenzene and dichlorobenzene High solubility in non-chlorinated solvent processing |
o-Xylene (8 mg/ml), chloroform (10mg/ml), chlorobenzene (10 mg/ml) |

For polymer with higher molecular weights, it is suggested that lower concentration should be used with lower spin-coating speed for solution processing.
UV-Vis Absorption

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. Products may have minor cosmetic differences (e.g. to the branding) compared to the photos on our website. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, military, pharmaceuticals, cosmetics, food, or commercial applications.