We ship worldwide. Spend or more for FREE tracked shipping to , normally .
For more information, please see our worldwide shipping page.
We ship worldwide. Tracked large item shipping to from . All other products ship free with the purchase of an Ossila Glove Box.
Make sure your lab is fully equipped and stock up on high-quality materials, accessories, and consumables with our large order discounts. Spend over £8,000 for an 8% discount or spend over £10,000 for a 10% discount.
mCBP-CN, electron transporting host material
Better film morphology and device thermal stability compared to mCBP
mCBP-CN, or 3,3′-di(carbazol-9-yl)-5-cyano-1,1′-biphenyl, has a structure of two carbazole units attached to a biphenyl linker. The only difference that it has to the well known host mCBP is that a polar cyano (CN) group is attached to one of the phenyls. The asymmetrically attached CN group can both increase the ground-state dipole moment and greatly improve film morphology and device thermal stabilities.
The strong electron withdrawing CN group can also effectively alter the electron densities of the orbitals, making mCBP-CN an electron transporting host with deep HOMO/LUMO energy levels (while mCBP is a hole transport host material).
Carbazole derivatives, Fluorescent and phosphorescent host materials, Sublimed materials
Product Details
Purity
Sublimed >99.0% (HPLC)
Melting point
mp= 256 °C, Tg = 113 °C
Appearance
Pale White powder/crystals
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure
Chemical structure of 3,3′-di(carbazol-9-yl)-5-cyano-1,1′-biphenyl (mCBP-CN)
An Alternative Host Material for Long-Lifespan Blue Organic Light-Emitting Diodes Using Thermally Activated Delayed Fluorescence, S. Ihn et al., Adv. Sci., 1600502 (2017); DOI: 10.1002/advs.201600502.
Achieving Ultimate Narrowband and Ultrapure Blue Organic Light-Emitting Diodes Based on Polycyclo-Heteraborin Multi-Resonance Delayed-Fluorescence Emitters, I Park et al., Adv. Mater., 34 (9), 2107951 (2022); DOI: 10.1002/adma.202107951.
Novel hole blocking materials based on 2,6-disubstituted dibenzo[b,d]furan and dibenzo[b,d]thiophene segments for high-performance blue phosphorescent organic light-emitting diodes, S. Jang et al., J. Mater. Chem. C, 7, 826 (2019); DOI: 10.1039/c8tc04900a.
Rigid Oxygen-Bridged Boron-Based Blue Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode: Approach towards Satisfying High Efficiency and Long Lifetime Together, D. Ahn et al., Adv. Optical Mater., 8 (11), 2000102 (2020); DOI: 10.1002/adom.202000102.
Photophysics of TADF Guest−Host Systems: Introducing the Idea of Hosting Potential, K. Stavrou et al., ACS Appl. Electron. Mater., 2, 9, 2868–2881 (2020); DOI: 10.1021/acsaelm.0c00514.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.