FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M0501A2-250mg
Price £310 ex. VAT

F8T2, popular semiconducting polymer used in organic electronics

High purity and available online for priority dispatch


Poly(9,9-dioctylfluorene-alt-bithiophene), also known as F8T2 (CAS number 210347-56-1), is a semiconducting material that is widely used in organic electronics such as organic photovoltaics, polymer light-emitting diodes (PLED) and organic field-effect transistors (OFETs). Comparing with poly-3-hexylthiophene, F8T2 has even higher mobilities of 0.1 cm2/V·s and relatively higher stability against chemical doping by environmental oxygen or residual impurities such as mobile sulphonic acid in the PEDOT:PSS ink. This enables devices with higher on-off current ratios exceeding 105 and with better operating stability than printed poly-3-hexylthiophene devices[1].

The absorption in the blue region of F8T2 makes it an excellent donor polymer to blend with an acceptor having complementary spectrum or assemble a tandem cell with other low bandgap-conjugated polymers with absorption extended in the red region.

Luminosyn™ F8T2

Luminosyn™ F8T2 is now available.

High molecular weight and high purity

F8T2 is purified via Soxhlet extraction with methanol, hexane and chloroform under an argon atmosphere

Good solubility

Good solubility in most of common solvents (toluene, chloroform and chlorobenzene)

Large quantity orders

Plan your experiments with confidence with polymers from the same batch

General Information

CAS Number 210347-56-1
Chemical Formula (C37H44S2)n
Molecular Weight See batch information for details
HOMO / LUMO HOMO = 5.5 eV / LUMO = 3.1 eV [1]
Synonyms PFOT, Poly(9,9-dioctylfluorene-alt-bithiophene), Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene]
Classification / Family Polyfluorenes, Bithiophenes, Heterocyclic five-membered ring, Organic semiconducting materials, PLED green emitter materials, Organic Photovoltaics, Polymer Solar Cells, Light-emitting Diodes, OFET materials
Suggested Solvents Chloroform, chlorobenzene or dichlorobenzene

Chemical Structure

F8T2 chemical structure
Chemical structure of Poly(9,9-dioctylfluorene-alt-bithiophene), F8T2

Device Structure(s)

Device structure ITO/PEDOT:PSS/TFB/F8T2/Ca [3]
Colour Green
Max. Luminance 23,400
Max. Current Efficiency 3.68 cd/A
Max. Power Efficiency 2.9 lm W1

MSDS Documentation

F8T2 MSDS SheetF8T2 MSDS Sheet

Pricing

Batch Quantity Price
M0501A 250 mg £310
M0501A 500 mg £560
M0501A 1 g £1000
M0501A 5 g / 10 g* Please enquire

*For 5 - 10 grams order quantity, the lead time is 4-6 weeks.

Batch information

Batch Mw Mn PDI Stock info
M502 136,320 53,866 2.53 Discontinued
M503 45,586 16,493 2.76 Discontinued
M0501A1 63,525 26,387 2.41 Discontinued
M0501A2 116,093 45,136 2.6 In Stock

Literature and Reviews

  1. Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, J-H. Huang et al., Org. Electronics, 10, 27–33 (2009), doi:10.1016/j.orgel.2008.09.007.
  2. High-Efficiency Polymer LEDs with Fast Response Times Fabricated via Selection of Electron-Injecting Conjugated Polyelectrolyte Backbone Structure, M. Suh et al., ACS Appl. Mater. Interfaces, (2015), DOI: 10.1021/acsami.5b07862.
  3. On the use and influence of electron-blocking interlayers in polymer light-emitting diodes, R. Jin et al., Phys. Chem. Chem. Phys., 11, 3455-3462 (2009). DOI: 10.1039/B819200F.
  4. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, H. Sirringhaus et al., Science, 290 (5499), 2123-2126 (2000), DOI: 10.1126/science.290.5499.2123.
  5. Organic Light-Emitting Diodes Based on Poly(9,9-dioctylfluorene-co-bithiophene) (F8T2), P. Levermore et al., Adv. Funct. Mater., 19, 950–957 (2009); DOI: 10.1002/adfm.200801260.
  6. Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase, H. Sirringhaus et al., Appl. Phys. Lett. 77, 406 (2000); http://dx.doi.org/10.1063/1.126991.
  7. Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, J-H. Huang et al., Org. Electronics, 10, 27–33 (2009), doi:10.1016/j.orgel.2008.09.007.
  8. Hole mobility effect in the efficiency of bilayer heterojunction polymer/C60 photovoltaic cells, A. Macedo et al., Appl. Phys. Lett. 98, 253501 (2011); http://dx.doi.org/10.1063/1.3601476.
Return to the top