FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.

BTP-4F-12, Y6-BO (Y12)

Product Code M2245A1
Price $300.00 ex. VAT

BTP-4F-12, great for solution processability and mass device production

Low price, high purity (>98%) BTP-4F-12 available in sensible quantities

BTP-4F-12, also known as Y12, is a family member of BTP-4F (Y6). The two materials are very similar with the only difference between Y12 and Y6 being that Y12 has two butyloctyl side chains to the [1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole core while Y6 bears two ethylhexyl chains.

Comparing to Y6, Y12 has greater solubility and for this reason, Y12 has great advantage for solution processability and mass device production with environmentally benign solvents as active layer materials for organic polymer solar cells.

While PM6 (PBDB-T-2F) was used as the low band-gap donor polymer, mixed two well-compatible non-fullerene acceptors BTP-4F-12 and MeIC showed a great device performance with 17.4% efficiency and a high open-circuit voltage of 0.863 with minimum energy loss.

Device structure: indium tin oxide (ITO)/PEDOT:PSS/PM6:BTP-4F-12:MeIC/PDIN/Al. [1]

Thickness (nm) VOC (V) JSC (mA cm-2) FF (%) PCE (%)
N/A 0.863 25.4 79.2 17.4

Chemical Structure

y12, btp-4f-12, nfas
Chemical structure of BTP-4F-12 (Y12)

Literature and Reviews

  1. Achieving 17.4% Efficiency of Ternary Organic Photovoltaics with Two Well-Compatible Nonfullerene Acceptors for Minimizing Energy Loss, X. Ma et al., Adv. Energy Mater., 2001404 (2020); DOI: 10.1002/aenm.202001404.
  2. Review on smart strategies for achieving highly efficient ternary polymer solar cells, M. Zhang et al., APL Mater. 8, 090703 (2020); doi: 10.1063/5.0022887.
  3. Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with Over 16% Efficiency, L. Hong et al., Adv. Mater., 31(39):1903441 (2019); DOI: 10.1002/adma.201903441.
  4. Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics, C. An et al., Chem. Commun., 56, 4750-4760 (2020); doi: 10.1039/D0CC01038C.

General Information

CAS Number 2389125-23-7
Chemical Formula C90H102F4N8O2S5
Purity >98% (1HNMR)
Full Name 2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile
Molecular Weight 1564.18 g/mol
Absorption λmax 715 nm (Film)
HOMO / LUMO HOMO = -5.68 eV, LUMO = -4.06 eV [1]
Solubility Chloroform, chlorobenzene
Form Dark blue powder/crystals
Synonyms Y6-BO, BTP-BO-4F, Y12
Classification / Family NFAs, n-type non-fullerene electron acceptors, Organic semiconducting materials, Low band-gap small molecule, Small molecular acceptor, Organic photovoltaics, Polymer solar cells, NF-PSCs.

MSDS Documentation

BTP-4F-12 MSDSBTP-4F-12 MSDS Sheet


Batch Quantity Price
M2245A1 50 mg £240
M2245A1 100 mg £350
M2245A1 250 mg £700
M2245A1 500 mg £1150
M2245A1 1 g £2100

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top