FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.

Bepp2


Product Code M691
Price $308.00 ex. VAT

Bepp2, blue fluorescence emitter with excellent charge transport ability

ETL and HBL material used in high efficiency OLEDs


Bis[2-(2-hydroxyphenyl)-pyridine] beryllium, known as Bepp2, belonging to the beryllium complex family, is a blue fluorescence emitter with excellent charge transport ability. Due to its high electron mobility and high triplet energy level, Bepp2 has been used as an electron-transporting and hole/exciton-blocking layer material in OLEDs. High-efficiency blue OLEDs by using Bepp2 as the emitting layer material and high efficiency white OLEDs using Bepp2 as host material have been achieved [1-8].

Bepp2 can be also used as host material to fabricate orange, green, red EL devices.

General Information

CAS number 220694-90-6
Chemical formula C22H16BeN2O2
Molecular weight 349.39 g/mol
Absorption λmax 329 nm, 361 nm (chloroform)
Fluorescence λem 440 nm (chlorofom); 450 nm (film)
HOMO/LUMO HOMO = 5.7 eV, LUMO = 2.6 eV [1]
Synonyms
  • Be(pp)2Beryllium
  • bis[2-(2-pyridinyl)phenolate]Bis[2-(2-hydroxyphenyl)pyridinato]berylliumBis[2-(2-hydroxyphenyl)-pyridine]berylliumBis[2-(2-pyridinyl)phenolato]beryllium(II)
Classification / Family Blue emitter, Fluorescence host materials, Electron-transport layer (ETL), Hole-blocking layer (HBL), Sublimed materials

* Measurable with an optical spectrometer, see our spectrometer application notes.

Product Details

Purity Sublimed* > 99%
Melting point

TGA 365 °C (5% weight loss)

DSC 314 °C (onset)

Colour Light yellow powder/crystals

* Sublimation is a technique used to obtain ultra pure-grade chemicals, see sublimed materials for OLED devices.

Chemical Structure

Chemical structure of Bis[2-(2-hydroxyphenyl)pyridinato]beryllium
Chemical structure of Bis[2-(2-hydroxyphenyl)pyridinato]beryllium (Bepp2)

Device Structure(s)

Device structure ITO/NPB (60 nm)/Bepp2 (50 nm)/LiF (1 nm)/Al (200 nm) [1]
Colour Blue blue light emitting device
Max. Luminance 15, 000 cd/m2
Max. Current Efficiency 3.8 cd/A
Max. Power Efficiency 3.43 lm W−1
Device structure ITO/Cu-Pc(10 nm)/TPD(50 nm)/Bepp2 (40 nm)/LiF(1.5 nm)/Al(200 nm) [2]
Colour Blue blue light emitting device
Max. Luminance 4,000 cd/m2
Max. Power Efficiency 0.55 lm W−1
Device structure ITO/NPB (30 nm)/(bzq)2Ir(dipba):Bepp2 (20 nm)/Bepp2 (35 nm)/LiF (0.5 nm)/Al [3]
Colour White white light emitting device
Max. EQE 27.8%
Max. Current Efficiency 60.8 cd/A
Max. Power Efficiency 48.8 lm W−1
Device structure ITO/TPD (50 nm)/BePP2 (5 nm)/TPD (4 nm)/BePP2:rubrene (5 nm)/TPD (4 nm)/Alq (10 nm)/Al [4]
Colour White white light emitting device
Max. Luminance 20,000 cd/m2
Max. Power Efficiency 1.11 lm W−1
Device structure ITO/NPB (40 nm)/TCTA:Ir(ppy)3 (15 nm), 12 wt%/Bepp2:Ir(ppy)3 (15 nm), 12 wt%/LiF (1 nm)/Al  (100 nm) [6]
Colour Green green light emitting device
Max. EQE 18.6%
Max. Current Efficiency 58.7 cd/A
Max. Power Efficiency 65.1 lm W−1
Device structure ITO/DNTPD (40 nm)/Bepp2:Ir(ppy)3 (50 nm), 15 wt%/LiF (0.5 nm)/Al (100 nm) [7]
Colour Green green light emitting device
Max. Current Efficiency 38.3 cd/A
Max. Power Efficiency 46.4 lm W−1

MSDS Documentation

Bepp2 MSDSBepp2 MSDS sheet

Literature and Reviews

  1. High-performance blue electroluminescent devices based on hydroxyphenyl-pyridine beryllium complex, Y Liu, et al., Appl. Phys. Lett., 78, 2300 (2001); doi: 10.1063/1.1366338.
  2. Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material, Y. Li et al., Chem. Mater., 12, 2672–2675 (2000); DOI: 10.1021/cm000237u.
  3. Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter, T. Peng et al., J. Mater. Chem., 21, 3551-3553 (2011); DOI: 10.1039/C0JM03645E.
  4. Organic white light electroluminescent devices, S. Liu et al., Thin Solid Films, 363, 294-297 (2000); doi:10.1016/S0040-6090(99)01017-2. 
  5. White light emission induced by confinement in organic multiheterostructures, Z. Y. Xie et al., Appl. Phys. Lett., 74, 641 (1999); http://dx.doi.org/10.1063/1.123190.
  6. Low roll-off efficiency green phosphorescent organic light-emitting devices with simple double emissive layer structure, W-S. Jeon et al., Appl. Phys. Lett., 93, 063303 (2008); doi: 10.1063/1.2969040.
  7. Highly efficient bilayer green phosphorescent organic light emitting devices, W-S. Jeon et al., Appl. Phys. Lett., 92, 113311 (2008); http://dx.doi.org/10.1063/1.2898527.
  8. High-efficiency and high-quality white organic light-emitting diode employing fluorescent emitters, Y. Yang et al., Org. Electronics, 12 (1), 29-33 (2011); doi:10.1016/j.orgel.2010.10.006.

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top