FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M661-100mg
Price £260 ex. VAT

Ir(ppy)2(acac), OLED material with high quantum yields

Higher external quantum efficiency than Ir(ppy)3


Like Ir(ppy)3, bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III), or Ir(ppy)2(acac), is one of the most studied OLED materials due to its high quantum yields. When doped into 3,5-Diphenyl-4-(1-naphthyl)-1H-1,2,4-triazole (TAZ), very high external quantum efficiencies of (19.06 ± 1.0%) and luminous power efficiencies of 60±5 lm/W were achieved.[1] This was attributed to the nearly 100% internal phosphorescence efficiency of Ir(ppy)2(acac), coupled with balanced hole and electron injection, and triplet exciton confinement within the light-emitting layer.

Ir(ppy)2(acac) demonstrated higher external quantum efficiency when compared with Ir(ppy)3. It was suggested that Ir(ppy)2(acac) molecules preferentially align so that their transition dipole moment is parallel to the substrate, whereas the orientation of Ir(ppy)3 molecules is nearly isotropic.[2]

General Information

CAS number 337526-85-9
Chemical formula C27H23IrN2O2
Molecular weight 599.70 g/mol
Absorption λmax 259 in THF
Fluorescence λem 314 in THF
HOMO/LUMO HOMO 5.6 eV, LUMO 3.0 eV [1]
Synonyms
  • (ppy)2Ir(acac)
  • Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III)
  • Bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)
Classification / Family Organometallic complex, Green emitter, phosphorescence dopant OLEDs, OLED and PLED materials, Sublimed materials

Product Details

Purity

>99.5% (sublimed)

>98.0% (unsublimed) 

Melting point 349-356 °C
Appearance Yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials.

Chemical Structure

Chemical structure of ir(ppy)2(acac)
Chemical structure of Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III)

Device Structure(s)

Device structure  ITO/MO3 (1 nm)/CBP (35 nm)/8 wt% Ir(ppy)2(acac):CBP/TPBi (65 nm)/LiF/Al (100 nm) [3]
Colour Green green light emitting device
EQE@100  cd/m2 23.4
Current Efficiency@100 cd/m2 81 cd/A
Power Efficiency@100 cd/m2 78.0 lm W−1
Device structure Cl-ITO*/CBP (35 nm)/CBP:Ir(ppy)2(acac) (15 nm, 8 wt%)/TPBi (65 nm)/LiF (1 nm)/Al (100 nm) [4]
Colour Green green light emitting device
EQE@100  cd/m2 29.1
Current Efficiency@100 cd/m2 93 cd/A
Power Efficiency@100 cd/m2 97 lm W−1
Device structure ITO (70 nm)/TAPC (30 nm)/TCTA (10 nm)/TCTA:B3PYMPM:Ir(ppy)2(acac) (30 nm, 1:1: 8 wt%)/B3PYMPM (40 nm)/ LiF (0.7 nm)/ Al (100 nm) [6]
Colour Green green light emitting device
Turn on Voltage 2.4 V
EQE@100 cd/m2 29.1
Power Efficiency@100 cd/m2 124.0 lm W−1
Device structure ITO/PEDOT:PSS/α-NPD (20 nm)/TCTA (5 nm)/T2T*:(PPy)2Ir(acac)(9:1 wt%) (25 nm)/TAZ (50 nm)/LiF (0.5 nm)/Al (100 nm) [7]
Colour Green green light emitting device
Max. Luminance 85,000 cd/m2
Max. Current Efficiency 54 cd/A
Max. EQE 17.4%
Max. Power Efficiency 48 lm W−1 
Device structure ITO/PEDOT:PSS (40 nm)/NPB (15 nm)/ TCTA: 4 wt.% Ir(piq)3 (3.5 nm)/TCTA: 4 wt.% Ir(bt)2(acac) (4 nm)/TCTA: 25 wt.% TmPyPb*: 2 wt. % 4P-NPD* (7 nm)/TmPyPb (4 nm)/TmPyPb: 5 wt.% Ir(ppy)2(acac) (3 nm)/TmPyPb (15 nm)/TmPyPb: 4 wt.% Cs2CO3 (35 nm)/ Cs2CO3/Al [8]
Colour White white light emitting device
EQE@1000 cd/m2 14.2%
Current Efficiency@1000 cd/m2 26 cd/A
Power Efficiency@1000 cd/m2 21.9 lm W−1
Device structure  ITO/MoO3(1nm)/CBP(20nm)/CBP: Ir(piq)2(acac) (3 wt.%,4 nm)/CBP: Ir(DMP)3(5 wt.%,4 nm)/CBP: Ir(ppy)2(acac)(7 wt.%,5 nm)/CBP(3 nm)/Bepp2:BCzVBi(50wt.%,40nm)/Bepp2(20nm)/LiF(1nm)/Al(100nm) [9]
Colour White white light emitting device
Max. Current Efficiency 26.4 cd/A
Max. Power Efficiency 24.8 lm W−1
Device structure  Glass/PEDOT:PSS (100 nm)/TAPC (30 nm)/CBP:8 wt% Ir(ppy)2(acac) (20 nm)/B3PYMPM (25 nm)/B3PYMPM:Rb2CO3 (45 nm)/Al(150 nm) [10] ITO FREE
Colour Green green light emitting device
Max. EQE 64.5%
Max. Power Efficiency 283.4 lm W−1
Device structure  ITO/PEDOT:PSS/TCTA (25 nm)//TCTA:8 wt% Ir(ppy)2(acac) (10 nm)/TPBi (150  nm)/LiF (10 nm)/Al (150 nm) [11]
Colour Green green light emitting device
Max. EQE 23.7%
Max. Current Efficiency 88 cd/A
Max. Power Efficiency 67.5 lm W−1

*For chemical structure information please refer to the cited references.

Characterisation

HPLC trace of Ir(ppy)2(acac)
HPLC trace of Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III), Ir(ppy)2(acac)

Pricing

Grade Order Code Quantity Price
Sublimed (>99.5% purity) M661 100 mg £260
Unsublimed (>98.0% purity) M662 250 mg £240
Sublimed (>99.5% purity) M661 250 mg £520
Unsublimed (>98.0% purity) M662 500 mg £420
Sublimed (>99.5% purity) M661 500 mg £950
Unsublimed (>98.0% purity) M662 1 g £760
Sublimed (>99.5% purity) M661 1 g £1600

MSDS Documentation

Ir(ppy)2(acac) MSDSIr(ppy)2(acac) MSDS sheet

Literature and Reviews

  1. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, C. Adachi et al., J. Appl. Phys. 90, 5048 (2001); http://dx.doi.org/10.1063/1.1409582.
  2. Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes, P. Liehm et al., Appl. Phys. Lett. 101, 253304 (2012); http://dx.doi.org/10.1063/1.4773188.
  3. Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2, Z. B. Wang et al., Appl. Phys. Lett. 98, 073310 (2011); doi: 10.1063/1.3532844 .
  4. Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility,
    M. G. Helander et al., Science, 332, 944-947 (2011); DOI: 10.1126/science.1202992.
  5. Low Roll-Off and High Efficiency Orange Organic Light Emitting Diodes with Controlled Co-Doping of Green and Red Phosphorescent Dopants in an Exciplex Forming CoHost, S. Lee et al., Adv. Funct. Mater., 23, 4105–4110 (2013); DOI: 10.1002/adfm.201300187.
  6. Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency, Y-S. Park et al., Adv. Funct. Mater., 23, 4914–4920 (2013); DOI: 10.1002/adfm.201300547.
  7. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,H-Fan Chen et al., J. Mater. Chem., 19, 8112–8118 (2009). 
  8. A white organic light-emitting diode with ultra-high color rendering index, high efficiency, and extremely low efficiency roll-off, N. Sun et al., Appl. Phys. Lett. 105, 013303 (2014); http://dx.doi.org/10.1063/1.4890217.
  9. A multi-zoned white organic light-emitting diode with high CRI and low color temperature,  T. Zhang et al., Sci. Reports, 6:20517; DOI: 10.1038/srep20517.
  10. Achieving Above 60% External Quantum Effi ciency in Organic Light-Emitting Devices Using ITO-Free Low-Index Transparent Electrode and Emitters with Preferential Horizontal Emitting Dipoles, C-Y. Lu et al., Adv. Funct. Mater. 2016; DOI: 10.1002/adfm.201505312.
  11. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures, M. Zhang et al., Chin. Phys. Lett., 32, 097803 (2015).
Return to the top