FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

PEDOT:PSS and PEDOT Based Polymers


PEDOT:PSS Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

PEDOT:PSS (or Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, CAS 155090-83-8) is a transparent conductive polymer. It is a mixture of the ionomer poly(3,4-ethylenedioxythiophene), carrying positive charges, and polystyrene sulfonate, carrying negative charges. Due to its unique combination of conductivity, transparency, ductility, and ease of processing, PEDOT:PSS has become a benchmark material in thin-film electronic fabrication. There are many types of PEDOT dispersions, including PEDOT:PSS AI 4083 and PEDOT:PSS PH 1000.

In organic light emitting diodes, organic photovoltaics, and perovskite photovoltaics, PEDOT:PSS can be used as an interfacial layer for hole transport. It can also be used as a replacement for transparent conductors such as ITO or FTO. Commonly, it is used in applications where the underlying substrate is flexible.

The properties of PEDOT:PSS vary between dispersions, hence its versatility. The key properties of PEDOT:PSS are its conductivity and the size of its work function. Since PEDOT is conductive and PSS is insulating, the conductivity of the resulting polymer depends on the ratio between the two ionomers and the microstructure of the film. Similarly, a higher presence of PSS at the surface will result in a deeper work function.

PEDOT:PSS is typically available as a water-based emulsion. It is created via the polymerization of PEDOT monomers in a polystyrene sulfonic acid solution. We supply all our PEDOT:PSS solutions in light resistant bottles with temperature indicators.

PEDOT Materials


Filter by solvent:

Filter by sheet resistance:

Filter by deposition method:

Filter by applications:

PEDOT:PSS from Ossila was featured in the high-impact paper (IF 30.85)

PEDOT:PSS from Ossila was featured in the high-impact paper (IF 30.85), A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte, L. Manjakkal et al., Adv. Mater., 1907254 (2020); DOI: 10.1002/adma.201907254.

Choose the Right PEDOT


All PEDOT:PSS products in a family photo

Choosing the right PEDOT product for you could be a difficult task. Each has a different base solvent, conductivity, viscosity, and even composition. At Ossila, we have a range of PEDOT:PSS and PEDOT:Complex products. They are available in different solvents for applications in OLED, OPV, and sensors, and are suitable for different deposition methods, i.e. spin coating, inkjet printing and screen printing.

PEDOT Products by Sheet Resistance


100-1000 / Ω/sq 1000 - 10E4 / Ω/sq 10E4 - 10E6 / Ω/sq +10E6 / Ω/sq

PH 1000

F HC Solar

F 020

F ET

S V4 STAB

P T4

P T4

P T4

HTL Solar

HTL Solar 3

HIL 8

Al 4083

P JET (OLED)

CH 8000

P T4

HTL Solar

PEDOT Products by Application


OLED OPV Transistors Sensor Transparent Electrodes Conductive Textile and Fabric LC Writing Boards

Al 4083

PH 1000

CH 8000

HIL 8

P JET (OLED)

Al 4083

PH 1000

HTL Solar

HTL Solar 3

F HC Solar

HTL Solar 4 (coming soon)

PH 1000

S V4 STAB

P JET (OLED)

HTL Solar

F HC Solar

S V4 STAB

F ET

P T4

PH 1000

S V4 STAB

F 020

F ET

P T4

F 020

F ET

S V4 STAB

PH 1000

 

F 020

F ET

P T4

PH 1000

PEDOT Products by Solvent Base


Water Toluene Anisole Butyl benzoate Glycols (Paste)

Al 4083

PH 1000

HTL Solar

F HC Solar

CH 8000

P JET (OLED)

F 020

F ET

P T4

HTL Solar 3

HTL Solar 4 (coming soon)

HIL 8

S V4 STAB

PEDOT Products by Deposition Method


Coating

(Spin coating, spray coating, slot die coating, doctor-blade coating, dip coating)

Inkjet Printing Screen Printing

Al 4083

PH 1000

HTL Solar

HTL Solar 3

HTL Solar 4 (coming soon)

F HC Solar

CH 8000

HIL 8

F 020

F ET

S V4 STAB

P T4

P JET (OLED) S V4 STAB

Frequently Asked Questions


Resources and Support


PEDOT:PSS What is PEDOT:PSS?

PEDOT:PSS is a blend of two distinct polymers: poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS).

Read more...
PEDOT:PSS Polymerization PEDOT and PEDOT:PSS Synthesis

PEDOT synthesis involves the oxidative chemical or electrochemical polymerization of EDOT monomer.

Read more...
PEDOT:PSS Conjugation PEDOT:PSS Conductivity

PEDOT:PSS has conductivities in the range of 10-4 - 103 S cm-1. PEDOT:PSS is conductive because it contains the conjugated intrinsically conductive polymer (ICP) PEDOT.

Read more...
PEDOT:PSS PEDOT:PSS Work Function

PEDOT:PSS work function ranges 4.8 - 5.2 eV for commercially available products.

Read more...

Deposition

PEDOT:PSS Deposition How to spin coat PEDOT:PSS

For the deposition of thin films of PEDOT:PSS on a freshly prepared surface, we recommend using a vacuum-free spin coater and following this five-step process:

Read more...
Spin Coating: Complete Guide to Theory and Techniques Spin Coating: Complete Guide to Theory and Techniques

Spin coating is a common technique for applying thin films to substrates. When a solution of a material and a solvent is spun at high speeds, the centripetal force and the surface tension of the liquid together create an even covering.

Read more...

Applications

PEDOT:PSS in Solar Cells

PEDOT:PSS layers are often used in third generation photovoltaics like organic or perovskite solar cells. It is an attractive material for these applications due to its:

Read more...
Contact Angle Measurements of Surface Wetting Contact Angle Measurements of Surface Wetting

Surface wetting occurs when a droplet spreads out over a surface, such that its contact angle is below 90°. When the droplet spreads out completely, this angle will be 0°, and 'complete wetting' will have occurred.

Read more...
OPV and OLED Fabrication Guide OPV and OLED Fabrication Guide

Ossila’s pre-patterned ITO substrates are used for a wide variety of teaching and research devices (both organic and inorganic) where a high-quality ITO surface is required.

Read more...
The Ultimate Guide to Making Perovskite Solar Cells The Ultimate Guide to Making Perovskite Solar Cells

Over the past 10 years, perovskite solar cells (PSCs) have achieved record efficiencies of 25.5% single junction solar cells (as of 20211) and these efficiencies are rising impressively.

Read more...
Perovskite Fabrication Perovskite Fabrication

This guide describes our recommended fabrication routine for perovskite solar cells using Ossila I101 Perovskite Precursor Ink which is designed to be used with a bottom ITO/PEDOT:PSS anode and a top PC70BM/Ca/Al cathode.

Read more...
Guide to make efficient air processed perovskite devices Guide to make efficient air processed perovskite devices

This video provides a guide to making efficient air-processed perovskite devices.

Read more...
Solution Based OFETs Solution Based OFETs

This guide describes the fabrication of evaporation-free OFETs using the Ossila pre-patterned ITO OFET substrates (product codes S161 & S162).

Read more...
Making OLED and OPV solar cells: Quickstart Guide Making OLED and OPV solar cells: Quickstart Guide

Organic photovoltaic cells (OPVs) or organic light emitting diodes (OLEDs) can be easily manufactured using Ossila’s pre-patterned ITO substrates and a few simple spin coating and evaporating steps.

Read more...

Literature


Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, H. J. Snaith et. al. Nature Communications, 4, (2013) DOI: 10.1038/ncomms3761

High efficiency stable inverted perovskite solar cells without current hysteresis, M. Grätzel et. al. Energy Environ. Sci. 8, (2015) 2725-2733 DOI: 10.1039/c5ee00645g

Return to the top